LUXEON V2
Assembly and Handling Information

Introduction

This application brief addresses the recommended assembly and handling guidelines for LUXEON V2 emitters. LUXEON V2 emitters are designed to deliver high luminous flux and efficacy from a compact optical source, enabling tighter beam control and higher punch due to a smaller apparent source size. Proper assembly, handling and thermal management, as outlined in this application brief, ensures high optical output and long lumen maintenance for LUXEON V2 emitters.

Scope

The assembly and handling guidelines in this application brief apply to all the part numbers as described in the LUXEON V2 datasheet.

<table>
<thead>
<tr>
<th>L1V2 - AABBB00000CC0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Where:</td>
</tr>
<tr>
<td>A A</td>
</tr>
<tr>
<td>B B</td>
</tr>
<tr>
<td>C C C</td>
</tr>
</tbody>
</table>

In the remainder of this document, the term LUXEON emitter refers to any product in the LUXEON V2 product family.
Table of Contents

Introduction .. 1

Scope... 1

1. Component .. 3
 1.1 Description ... 3
 1.2 Optical Center ... 3
 1.3 Handling Precautions ... 4
 1.5 Electrical Isolation ... 4

2. Printed Circuit Board .. 5
 2.1 LUXEON Footprint and Land Pattern... 5
 2.3 Minimum Spacing ... 5

3. Thermal Management ... 6
 3.1 PCB Designs .. 6
 3.2 Other Thermal Assembly and Design Considerations .. 8

4. Thermal Measurement Guidelines .. 10
 4.1 Thermal Basics ... 10
 4.2 Temperature Sensor Pad (T_s) and Thermocouple (T_c) Attachment 10
 4.3 Effect of Placing T_s Point Further Away from LED Package 11
 4.4 Thermal Simulation Result ... 11

5. Assembly Process Guidelines ... 11
 5.1 Stencil Design .. 11
 5.2 Solder Paste ... 11
 5.3 Stencil and Stencil Printing ... 12
 5.4 Pick and Place .. 12
 5.5 Nozzle Tip Design ... 12
 5.7 Reflow, Solder Wetting and Voids ... 19
 5.8 Placement and Reflow Accuracy ... 19
 5.9 JEDEC Moisture Sensitivity Levels ... 19

6. Packaging Considerations—Chemical Compatibility ... 19

About Lumileds .. 22
1. Component

1.1 Description

The LUXEON V2 emitter consists of an InGaN (indium gallium nitride) LED chip mounted onto a ceramic substrate. The ceramic substrate provides mechanical support and thermally connects the LED die to a thermal pad on the bottom of the substrate. An electrical interconnect layer connects the LED chip to a cathode and anode on the bottom of the ceramic substrate. The ceramic substrate is overmolded with a silicone dome.

Each LUXEON V2 emitter includes a transient voltage suppressor (TVS) chip to protect the emitter against electrostatic discharge (ESD).

The bottom of the LUXEON V2 emitter (see Figure 1) contains three metallization pads, a large thermal pad in the center (electrically isolated), an anode and a cathode. All the pads are gold plated. The semi-circle cut out on the thermal pad is the cathode pad reference marker to aid in identifying the cathode pad. From the top view, a chamfer feature (see Figure 1) indicates package orientation with respect to the cathode pad.

![Figure 1. Bottom view (left) and top view (right) of the LUXEON V2 LED.](image)

1.2 Optical Center

The theoretical optical center of LUXEON V2 (see Figure 2) is located 1.725mm from any corner of the square shape. Optical rayset files for LUXEON V2 are available at lumileds.com.

![Figure 2. The theoretical optical center of LUXEON V2.](image)
1.3 Handling Precautions

LUXEON V2 is designed to maximize light output and reliability. However, improper handling of the device may damage the LED die and can affect its overall performance and reliability. In order to minimize the risk of damage to the LED die during handling, LUXEON V2 emitters should only be picked up from the side of the ceramic substrate as illustrated in Figure 3a.

Assembled boards must not be stacked up on top of each other or placed upside down on any surface to avoid damaging the top of LED package (Figure 3b).

![Figure 3a. Illustration of incorrect handling (left & middle) and correct handling (right) of a representative domed LED package similar to LUXEON V2.](image1)

![Figure 3b. Illustration of correct placement of assembled board (left) and incorrect stacking of assembled boards (right).](image2)

1.4 Cleaning

LUXEON V2 emitters should not be exposed to dust and debris. Any fine dust and debris on and around the package may cause a drastic decrease in optical output. In the event that a LUXEON emitter requires cleaning, try gently swabbing it using a lint-free swab. If necessary, a lint-free swab and isopropyl alcohol (IPA) can be used to gently remove stubborn dirt from the lens. Do not use any other solvents as they may adversely react with the LED assembly. For more information regarding chemical compatibility, see section 6.

1.5 Electrical Isolation

The thermal pad of the LUXEON V2 emitter is electrically isolated from its cathode and anode. Consequently, a high voltage difference between electrical and thermal metallization may occur in applications where multiple emitters are connected in series. As a reference, the nominal distance between the electrical metallization and the thermal metallization of the LUXEON V2 emitter is 0.5mm.

In order to avoid any electrical shock and/or damage to the LUXEON emitter, each design needs to comply with the appropriate standards of safety and isolation distances, known as clearance and creepage distances, respectively (e.g. IEC 60950, clause 2.10.4).
2. Printed Circuit Board

The LUXEON V2 emitter is designed to be soldered onto a Metal Core PCB (MCPCB) or a ceramic PCB. FR4 is not recommended due to its poor thermal resistance performance. To ensure optimal operation of the LUXEON V2 emitter, the PCB should be designed to minimize the overall thermal resistance between the LED package and the heat sink.

2.1 LUXEON Footprint and Land Pattern

The LUXEON V2 emitter has three pads that need to be soldered onto corresponding pads on the PCB to ensure proper thermal and electrical operation. Figure 4 shows the recommended footprint layout for LUXEON V2.

![Figure 4. Recommended footprint layout for LUXEON V2. All dimensions are in millimeters.](image)

2.2 Surface Finishing

Lumileds recommends using a high temperature organic solderability preservative (OSP) or electroless nickel immersion gold (ENIG) plating on the exposed copper pads.

2.3 Minimum Spacing

Lumileds recommends a minimum edge to edge spacing between LUXEON emitters of 0.3mm to minimize the chance of mechanical interference between neighboring units during pick and place. Note that placing multiple LUXEON emitters in close proximity to each other on a PCB may adversely impact the ability of the PCB to dissipate the heat from the emitters. Also, the light output for each LED may drop due to optical absorption by adjacent LED packages.
3. Thermal Management

3.1 PCB Designs

Table 1 summarizes the general characteristics of various PCB material systems available for LEDs.

Figure 5 shows various PCB constructions.

Table 1. General PCB characteristics for designing with LUXEON V2.

<table>
<thead>
<tr>
<th>SUBSTRATE</th>
<th>FR4*</th>
<th>MCPCB</th>
<th>CERAMIC PCB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Low to Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>PCB thermal resistance performance</td>
<td>Low to medium. Due to higher cost for a filled and capped via board and poor thermal performance, FR4 is not recommended for LUXEON V2</td>
<td>Medium to excellent</td>
<td>High to excellent</td>
</tr>
<tr>
<td>Coefficient of thermal expansion (CTE)</td>
<td>Good CTE matching with LUXEON V2 substrate</td>
<td>Moderate CTE matching with LUXEON V2 substrate</td>
<td>Good CTE matching with LUXEON V2 substrate</td>
</tr>
<tr>
<td>LED assembly packing density (thermal resistance consideration)</td>
<td>Suitable for low density applications with large spacing between LEDs and operating at a low drive current</td>
<td>Suitable for medium density applications with moderate spacing between LEDs</td>
<td>Suitable for high density applications with minimal spacing between LEDs</td>
</tr>
<tr>
<td>Mechanical assembly and handling</td>
<td>Easy, as board does not easily break</td>
<td>Easy, as board does not easily break</td>
<td>Extra precaution to prevent ceramic breakage (hard & brittle)</td>
</tr>
<tr>
<td>Supplier availability</td>
<td>High</td>
<td>High</td>
<td>Limited</td>
</tr>
</tbody>
</table>

Provided here for comparison purposes only. Lumileds does not recommend the use of FR4 for LUXEON V2.

![Figure 5. Schematic cross-section of MCPCB (left), FR4 (right) and ceramic (bottom) board constructions illustrate the important aspect of each board design (drawing not to scale).](image-url)
Each of these constructions has its own merits as discussed below.

Metal Core PCB

The most common MCPCB construction consists of the following layers:

- **A metal substrate, typically aluminum.** In some applications, a copper substrate may be more appropriate due to its higher thermal conductivity than aluminum (401 Wm⁻¹K⁻¹ versus 237 Wm⁻¹K⁻¹) but more expensive.

- **Epoxy dielectric layer.** This layer is typically engineered to improve the thermal conductivity from the top metal foil to the metal substrate. The typical thermal conductivity of the dielectric layer on a MCPCB is between 2 and 3 Wm⁻¹K⁻¹. This layer also functions as an electrical barrier during a Hi-Pot (high potential) test. The thickness of this layer is critical (75μm to 100μm are common) and impacts both the thermal resistance and the ability of the board to withstand a Hi-Pot test. Note that these two parameters are inversely related (i.e. a higher Hi-Pot test value, which can be achieved by increasing the dielectric thickness layer, will have a negative impact on the PCB thermal resistance).

- **Top copper layer.** A thickness of 1 oz. (35μm) or 2 oz. (70μm) are common.

- **Solder mask.** A white reflective solder mask is desirable to maximize light output extraction.

Another factor which may impact the PCB thermal resistance is the size of the top copper layer around the LUXEON V2 thermal pad. A direct metal contact of the metal substrate to the LUXEON V2 thermal pad without any epoxy dielectric layer in between can further reduce the MCPCB thermal resistance significantly as shown on the left in Figure 5. This type of board provides the best thermal resistance. However, the Hi-Pot test between the metal substrate and the LUXEON V2 electrode pads need to be considered.

FR4 PCB (for information only)

FR4 board construction (not recommended for use with LUXEON V2) consists of the following layers:

- **FR4 sheet (woven fiber glass fabrics reinforced epoxy laminate).** This material has excellent electrical insulation properties, but has very poor thermal conductivity.

- **Top and bottom copper layers.** A thickness of 1 oz. (35μm) or 2 oz. (70μm) is most common.

- **Solder mask.** A white reflective solder mask is desirable to maximize light output extraction.

In order to increase the thermal performance of FR4 boards, employing thermal vias will reduce the thermal resistance significantly. Two common approaches include:

- Open vias with plated through holes

- Filled and capped thermal vias as shown in Figure 5 (this gives better thermal performance than open via design)

It is important to determine the minimum number of thermal vias and via diameter for optimum thermal performance. Adding more thermal vias beyond this minimum quantity will not reduce the PCB thermal resistance significantly but may increase PCB manufacturing cost and may mechanically weaken the PCB board. Due to added complexity and the cost of making such an FR4 board, it is better to design a MCPCB board for LUXEON V2 assembly.

Ceramic PCB

Ceramic PCB construction consists of the following layers:

- **Ceramic substrate.** Commonly used materials are alumina (Al2O3) or aluminum nitride (AlN). The thermal conductivity of alumina ranges from 20 to 30 Wm⁻¹K⁻¹, depending on the grades of alumina material in the substrate. The thermal conductivity of aluminum nitride ranges from 170 to 230 Wm⁻¹K⁻¹ depending on the additives added during the ceramic manufacturing process.

- **Top copper layer.**

- **Solder mask.** A white reflective solder mask is desirable to maximize light output extraction.
Since ceramic has an excellent thermal conductivity but very poor electrical conductivity, the LED thermal pad can be directly attached to the ceramic via copper and solder layer, allowing LEDs to be closely packed. This makes ceramic very attractive in high density packaging.

However, ceramic is brittle and expensive, and requires extra handling precautions during assembly and handling.

3.2 Other Thermal Assembly and Design Considerations

Thermal Interface Materials (TIM) Selection

Once the suitable PCB board material and design has been made, the TIM selection should be made with the following considerations:

- **Pump out.** Some TIMs will move out of the thermal path during extreme temperature excursions and will create voids in the thermal path. These materials should not be used.
- **TIM thickness.** Excessive thickness of some TIMs will present an unacceptable thermal resistance even though the thermal conductivity of the material may be high.
- **Surface roughness.** In order to fill the air gaps between adjacent surfaces, choose the appropriate TIM that minimizes the interfacial contact resistance.
- **Operating temperature.** Some TIMs perform poorly at elevated temperatures. Care should be taken to select a TIM that will perform well under the anticipated operating conditions.
- **Out-gassing.** Out-gassing of some TIMs at design temperatures may produce undesirable optical or appearance qualities (e.g. fogging) in a sealed system. Special consideration must be given to limit this effect.
- **Clamping force.** TIMs, such as thermal tape or pads, perform better when the right pressure is applied.

LED Component Spacing (Density)

Depending on the drive current and intended LED spacing, the right PCB material must be chosen. See Table 1 for general guidance. As more LEDs are packed closely together, thermal crowding effect becomes more important and will affect the ability of the PCB to dissipate heat.

Electrical Power Distribution

When a large drive current is transported to operate many LEDs, proper distribution of power is important. Improper design of PCB transmission lines (e.g. width and/or unequal string lengths) can affect the electrical resistance causing localized heating and voltage drop.

Some important considerations on copper trace pattern layout to optimize electrical and to some extent thermal performance:

- **Trace width.** There are many third party online tools that performs PCB trace width calculator such this one here (http://circuitcalculator.com/wordpress/2006/01/31/pcb-trace-width-calculator/) to determine the voltage drop and the acceptable copper trace temperature rise. Note: an improper design of copper trace width can be a source of unwanted heat generation.
- **Trace routing.** Layout the circuit to keep trace length as short as possible. For LEDs with many parallel strings, having a symmetric trace pattern layout with respect to LED positioning help to reduce light output non-uniformity.
- **Balanced transmission line length and width.** Each parallel string of LED's should have the same relative length or trace resistance path.

A hypothetical example. Consider LEDs arranged and connected as shown in Figure 6 (top drawing) where the electrical schematic represents actual trace and LED layout. The input current I_F, will flow from left to right. The equivalent electrical trace resistance schematic of the trace width can be represented as trace resistance R as shown in the middle drawing of Figure 6 with LED#N being located furthest away from the input current. If the trace width is insufficient, it will cause significant voltage drop across R, leaving the last LEDs (LED#N) to appear the dimmest while the left most LED#1 will be the brightest. In such configuration, best to optimize trace width to keep the trace resistance negligible or route the return
IF current through LED#N to maintain equal total trace resistance across all LED electrical paths as shown in the bottom drawing of Figure 6.

Figure 6. Effect of trace resistance and routing pattern on LED light output performance as described.

Figure 7 shows a real-life example of an application design concept as described above. Left and right pictures are thermal images of the same board operating at the same drive current. The narrow PCB copper trace, as indicated in the left picture, carries very high current to feed several LEDs connected in parallel. The picture on the right shows a modified electrical trace routing for the input current. Notice that the right picture shows more uniform temperature distribution than the left picture after adjusting the electrical power distribution of the circuit.

Figure 7. A real-life example of an application design concept.
4. Thermal Measurement Guidelines

4.1 Thermal Basics

This section provides general guidelines on how to determine the junction temperature of a LUXEON V2 in order to verify that the junction temperature in the actual application during regular operation does not exceed the maximum allowable temperature specified in the datasheet.

The typical thermal resistance ($R_{\theta_{j-\text{thermal pad}}}$) between the junction and the thermal pad for LUXEON V2 is specified in the LUXEON V2 datasheet. In LUXEON V2 emitters, most of the heat is conducted via the large thermal pad at the base of the package. With this information, the junction temperature (T_j) can be determined according to the following equation:

$$T_j = T_{\text{thermal pad}} + R_{\theta_{j-\text{thermal pad}}} \cdot P_{\text{electrical}}$$

In this equation, $P_{\text{electrical}}$ is the electrical power going into the LUXEON V2 emitter and $T_{\text{thermal pad}}$ is the temperature at the bottom of the LUXEON V2 thermal pad.

4.2 Temperature Sensor Pad (T_s) and Thermocouple (T_c) Attachment

Although, in typical applications it may be difficult to measure the thermal pad temperature ($T_{\text{thermal pad}}$) directly. Therefore, a practical way to determine the LUXEON V2 junction temperature is by measuring the temperature (T_s) of a predetermined sensor pad on the PCB right next to the LUXEON V2 emitter with a thermocouple (TC). The junction temperature can then be calculated as follows:

$$T_j = T_s + R_{\theta_{j-s}} \cdot P_{\text{electrical}}$$

In the above equation, $P_{\text{electrical}}$ is the combined electrical power going into the LUXEON V2 emitter. The thermal resistance from junction to the T_s point ($R_{\theta_{j-s}}$) depends on several factors such as the PCB type and construction (e.g. MCPCB dielectric layer thickness), the location of the T_s point, type and volume of the adhesive used to attach the TC wire, and the LED emitter packing density.

To ensure accurate readings, the TC must make direct contact with the copper of the PCB onto which the LUXEON V2 thermal pad is soldered (i.e. any solder mask or other masking layer must first be removed before mounting the TC onto the PCB). The TC must be attached as close as possible to the primary heat flow path of the thermal pad of the LUXEON V2 emitter as shown in Figure 8. The TC wire must be in contact with the top copper layer of the thermal pad on LUXEON V2 with proper dispensed amount of thermal conductive epoxy to secure the TC wire.
An example of a suitable thermal conductive epoxy is a two-part Artic Silver™ thermal adhesive used in combination with a TC wire gauge of AWG 40 or 36. Excessive dispense of thermal adhesive may impact the accuracy of the T_5 temperature reading. In particular, if the thermal adhesive spills over onto the top of the package or blocks some side light, the T_5 reading may increase due to absorption of the optical energy. The use of thermally insulated epoxy is not recommended.

4.3 Effect of Placing T_s Point Further Away from LED Package

As described in 4.2, one of the factors that can affect the T_s measurement is its location. Ideally, the most accurate method to determine T_j is by placing the TC wire directly underneath the center of the thermal pad and then using the typical LED package thermal resistance, which is published in an LED datasheet, to calculate the T_j.

The further away the T_s point is from the primary heat flow path, the less sensitive the T_s temperature reading is to the changes in the heat dissipation from the LED package.

4.4 Thermal Simulation Result

A 1.0mm thick Al-MCPCB star board with 2 oz. top copper, dielectric thickness of 0.1mm and dielectric thermal conductivity of 3.0 Wm⁻¹K⁻¹ was used in the T_s point thermal resistance (R_θj-s) measurement. This value was characterized to be 3.2K/W for this Al-MCPCB star board design.

\[T_j = T_s + (3.2\text{K/W}) \times P_{\text{electrical}} \]

For other PCB designs, an experiment or thermal simulation may need to be conducted to determine R_θj-s.

5. Assembly Process Guidelines

5.1 Stencil Design

The recommended stencil design is shown in Figure 4 with a stencil thickness of 5 mils thick (127μm).

5.2 Solder Paste

Lumileds recommends a lead-free, no clean solder paste to mount LUXEON V2 emitters onto a PCB. Lumileds successfully tested a solder paste from Senju, M705-GRN360-K2-V SAC305, type 3 solder. However, since application environments
vary widely, Lumileds recommends that customers perform their own solder paste evaluation in order to ensure it is suitable for the targeted application.

5.3 Stencil and Stencil Printing

In general, there are three methods to align the stencil to the PCB during solder paste screen printing:

1. The stencil is manually aligned to the PCB prior to printing. No adjustments are made during printing.
2. The stencil is manually aligned to the PCB prior to printing. During printing, the machine keeps track of the PCB fiducial mark(s) and makes any necessary adjustments to maintain proper alignment with the PCB.
3. A technician performs a crude alignment of the stencil to the PCB. During printing, the machine keeps track of the PCB fiducial mark(s) and the stencil fiducial mark(s) and maintains proper alignment between the fiducials throughout the process.

Method 1 has the worst accuracy and repeatability of the three methods discussed. Method 2 offers the same accuracy as method 1 but ensures better repeatability. Method 3 has the best accuracy and best repeatability of the 3 methods discussed.

Depending on what screen printing method is used, the size of the anode and cathode solder mask openings on the PCB may have to be enlarged to compensate for any misalignments between the stencil and the PCB panel. Note, though, that any enlargement in the solder mask opening for anode and cathode pads may reduce the solder reflow placement accuracy.

In order to ensure proper alignment between the stencil and the PCB, as well as reliable transfer of solder paste onto the PCB, all PCB panels should be rigidly supported during solder paste printing. Instead of placing the PCB panel on multiple support pins, it is best to place the PCB panel on a single solid plate. This is particularly important for PCB panels which contain v-scores or perforated holes for de-paneling purposes.

5.4 Pick and Place

Automated pick and place equipment provides the best placement accuracy for LUXEON V2 emitters. Figure 9, Figure 10 and Figure 11 show various pick and place nozzle designs and corresponding machine settings for Juki, Samsung and Panasonic machines, respectively, which were successfully tested for LUXEON V2.

Note that pick and place nozzles are customer specific and are typically machined to fit specific pick and place tools. Based on these pick and place experiments, Lumileds advises customers to take the following general pick and place guidelines into account:

- The nozzle tip should be clean and free of any particles since this may interact with the silicone surface of LUXEON V2 during pick and place.
- During setup and the first initial production runs, it is a good practice to inspect the top surface or the dome of LUXEON V2 under a microscope to ensure that emitters are not accidentally damaged by the pick and place nozzle.

5.5 Nozzle Tip Design

Nozzle tip material made of metal is successfully evaluated. Tip design is clearly shown in Figure 9, Figure 10 or Figure 11. Its outer diameter is 3.73mm, inner diameter is 3.33mm and cavity depth is 2.5mm.

Table 2. Juki KE-2080L pick and place parameters.

<table>
<thead>
<tr>
<th>PICK AND MOUNT INFORMATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick Height</td>
<td>1.7mm</td>
</tr>
<tr>
<td>Mount Height</td>
<td>0mm</td>
</tr>
<tr>
<td>X-Y Speed</td>
<td>Fast 2</td>
</tr>
<tr>
<td>Picking Z Down</td>
<td>Fast 2</td>
</tr>
<tr>
<td>Picking Z Up</td>
<td>Fast 2</td>
</tr>
<tr>
<td>Placing Z Down</td>
<td>Fast 2</td>
</tr>
<tr>
<td>Placing Z Up</td>
<td>Fast 2</td>
</tr>
<tr>
<td>Laser Position</td>
<td>-0.54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISION INFORMATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Centering Method</td>
<td>Laser</td>
</tr>
<tr>
<td>Comp Shape</td>
<td>Corner Square</td>
</tr>
</tbody>
</table>

Table 3. Samsung SM421 pick and place parameters.

<table>
<thead>
<tr>
<th>PICK AND MOUNT INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pick Height</td>
</tr>
<tr>
<td>Mount Height</td>
</tr>
<tr>
<td>Delay – Pick Up</td>
</tr>
<tr>
<td>Delay – Place</td>
</tr>
<tr>
<td>Delay – Vac Off</td>
</tr>
<tr>
<td>Delay – Blow On</td>
</tr>
<tr>
<td>Speed – XY</td>
</tr>
<tr>
<td>Speed – Z Pick Down</td>
</tr>
<tr>
<td>Speed – Z Pick Up</td>
</tr>
<tr>
<td>Speed – R</td>
</tr>
<tr>
<td>Speed – Z Place Down</td>
</tr>
<tr>
<td>Speed – Z Place Up</td>
</tr>
<tr>
<td>Z Align Speed 2</td>
</tr>
<tr>
<td>Soft Touch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISION INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Camera No</td>
</tr>
<tr>
<td>Side</td>
</tr>
<tr>
<td>Outer</td>
</tr>
</tbody>
</table>
Figure 11. Nozzle design for Panasonic CM402 (part number: KME-0716/16, drawing number: 13998B from Ching Yi Technology Pte. Ltd., http://www.chingyi.com.sg). All dimensions are in millimeters.

Table 4. Panasonic CM402 pick and place parameters.

<table>
<thead>
<tr>
<th></th>
<th>PICK AND MOUNT INFORMATION</th>
<th></th>
<th>VISION INFORMATION</th>
<th></th>
<th>NOZZLE LIBRARY DATA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gap - Mount</td>
<td>0mm</td>
<td></td>
<td>Recognition Speed</td>
<td>Auto (Fast)</td>
<td>VU, Vacuum Rise Time</td>
<td>5</td>
</tr>
<tr>
<td>Gap - Pick</td>
<td>1.76mm</td>
<td></td>
<td>Lamp 1</td>
<td>0</td>
<td>VD, Vacuum Break Time</td>
<td>-2</td>
</tr>
<tr>
<td>Pickup Position - Z</td>
<td>0mm</td>
<td></td>
<td>Lamp 2</td>
<td>0</td>
<td>TT, Pickup Holding Time</td>
<td>5</td>
</tr>
<tr>
<td>Fdr Drive Time</td>
<td>Std</td>
<td></td>
<td>Lamp 3</td>
<td>0</td>
<td>MT, Mounting Holding Time</td>
<td>0</td>
</tr>
<tr>
<td>Pickup Keep Time</td>
<td>Std</td>
<td></td>
<td>Lamp 4</td>
<td>120</td>
<td>PM, Failure Judgement Pressure</td>
<td>-20</td>
</tr>
<tr>
<td>Mount Keep Time</td>
<td>Std</td>
<td></td>
<td>Lamp 5</td>
<td>0</td>
<td>PF, Nozzle Clogging Detection Pressure</td>
<td>-85</td>
</tr>
<tr>
<td>Pickup Speed</td>
<td>100</td>
<td></td>
<td>Lamp 6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mount Speed</td>
<td>100</td>
<td></td>
<td>Lamp 7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lamp 8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.6 Pick and Place Machine Optimization

Pick and place machines are typically equipped with special pneumatic or electric feeders to advance the tape containing the LEDs. In pneumatic feeders, air pressure is used to actuate an air cylinder which then turns the sprocket wheel to index the pocket tape; electric feeders, in contrast, use electric motors to turn the sprocket wheel (see Figure 12). Electric feeders often also contain a panel which allows an operator to control the electric feeder manually.

The indexing step in the pick and place process may cause some LEDs to accidentally jump out of the pocket tape or may cause some LEDs to get misaligned inside the pocket tape, resulting in pick-up errors. Depending on the feeder design, minor modifications to the feeder can substantially improve the overall pick and place performance of the machine and reduce/eliminate the likelihood of scratch or damage to the LEDs.

There are many types of pick and place feeder designs available. Some feeders can be used as-is without any further modifications, some feeders require a shift in the position where the cover tape is peeled off the tape, and yet other feeders require the shutter to be completely removed so that the cover tape peeling position can be adjusted. Figure 13 shows representative pictures of each feeder design. Since there are many different feeder designs in use, it is important to understand the basic principle behind modifying the feeders so that effective modifications can still be carried out when different feeder designs are encountered.

The underlying principle behind each feeder modification is to protect the silicone dome with the cover tape until the LED is ready to be picked up by the nozzle. To achieve this, the cover tape should only be peeled off just before the nozzle picks up the LED (see Figure 14 and Figure 15).

In some instances, the new peeling location is not wide enough. In such cases, the peeling location needs to be widened so that the cover tape can be peeled off without any obstruction (see Figure 16).

Figure 12. Examples of an electric feeder (left) and a pneumatic feeder (right) which are typically used in pick and place machines to advance the tape with LEDs.
Figure 13. Three representative feeder designs. Feeder 1 does not require any modification. Feeder 2 requires the cover tape peeling position to be shifted. Feeder 3 requires the shutter to be removed before the cover tape peeling position can be adjusted.

Figure 14. Illustration of the general principle behind the feeder modification.
To minimize the jerking of components in pneumatic feeders during indexing, it may be necessary to install an air pressure control valve. In some pneumatic feeder designs, such a control valve is already integrated by the machine supplier; in others an external control valve may have to be installed (see Figure 17).
5.7 Reflow, Solder Wetting and Voids

The LUXEON V2 emitter is compatible with standard surface-mount and lead-free reflow technologies. This greatly simplifies the manufacturing process by eliminating the need for adhesives and epoxies. The reflow step itself is the most critical step in the reflow soldering process and occurs when the boards move through the oven and the solder paste melts, forming the solder joints. To form good solder joints, the time and temperature profile throughout the reflow process must be well maintained.

A temperature profile consists of three primary phases:

1. **Preheat**: the board enters the reflow oven and is warmed up to a temperature lower than the melting point of the solder alloy.
2. **Reflow**: the board is heated to a peak temperature above the melting point of the solder, but below the temperature that would damage the components or the board.
3. **Cool down**: the board is cooled down, allowing the solder to freeze, before the board exits the oven.

As a point of reference, the melting temperature for SAC 305 solder system is 217°C. A typical reflow profile that follows the profile shown in the LUXEON V2 datasheet (taken from the IPC/JEDEC J-STD-020D moisture/reflow sensitivity classification document), with a peak temperature setting of 250°C, can be used as a starting point in the reflow profile process optimization study.

To ensure good solder joint reliability, the solder reflow process should be tuned such that dewetting and solder voids after reflow are minimized. Lumented recommends a maximum specification of 25% on the combined dewetting and solder void area under critical pads. However, since application environments vary widely, customers should always perform their own evaluation in order to ensure that the maximum allowable amount of dewetting and solder voids is suitable for the targeted application and operating conditions.

If excessive dewetting is observed, standards JESD22-B102E and IPC J-STD-003 provide guidelines on how to assess the solderability of the surface mount component and the corresponding PCB, respectively. According to these specifications a minimum of 95% of the critical surfaces tested shall exhibit good wetting. For LUXEON LEDs the critical area is typically defined as the area of the pads on the LED.

5.8 Placement and Reflow Accuracy

In order to achieve the highest placement accuracy, Lumented recommends using an automated pick and place tool with a vision system that can recognize the package outline of the LUXEON V2 emitter.

5.9 JEDEC Moisture Sensitivity Levels

LUXEON V2 emitters have a JEDEC moisture sensitivity level of 1. This is the highest level offered in the industry and highest level within the JEDEC standard. This ensures ease of use since the user no longer needs to be concerned about bake out times and floor life.

6. Packaging Considerations—Chemical Compatibility

The LUXEON V2 package contains a silicone dome to protect the LED chips and extract the maximum amount of light. As with most silicones used in LED optics, care must be taken to prevent any incompatible chemicals from directly or indirectly reacting with the silicone.

The silicone overcoat in the LUXEON V2 emitters is gas permeable. Consequently, oxygen and volatile organic compound (VOC) gas molecules can diffuse into the silicone dome. VOCs may originate from adhesives, solder fluxes, conformal coating materials, potting materials and even some of the inks that are used to print the PCBs.

Some VOCs and chemicals react with silicone and produce discoloration and surface damage. Other VOCs do not chemically react with the silicone material directly but diffuse into the silicone and oxidize during the presence of heat or...
light. Regardless of the physical mechanism, both cases may affect the total LED light output. Since silicone permeability increases with temperature, more VOCs may diffuse into and/or evaporate out from the silicone.

Careful consideration must be given to whether LUXEON V2 emitters are enclosed in an “air tight” environment or not. In an “air tight” environment, some VOCs that were introduced during assembly may permeate and remain in the silicone. Under heat and “blue” light, the VOCs inside the silicone coating may partially oxidize and create an appearance of silicone discoloration, particularly on the surface of the LED where the flux energy is the highest. In an air rich or “open” air environment, VOCs have a chance to leave the area (driven by the normal air flow). Transferring the devices, which were discolored in the enclosed environment back to “open” air, may allow the oxidized VOCs to diffuse out of the silicone and may restore the original optical properties of the LED.

Determining suitable threshold concentration limits for the presence of VOCs is very difficult since these limits depend on the type of enclosure used to house the LEDs and the operating temperatures. Also, some VOCs can photo-degrade over time.

Table 5 provides a list of commonly used chemicals that should be avoided as they may react with the silicone material. Note that Lumileds does not warrant that this list is exhaustive since it is impossible to determine all chemicals that may affect LED performance.

The chemicals in Table 5 are typically not directly used in the final products that are built around LUXEON V2 LEDs. However, some of these chemicals may be used in intermediate manufacturing steps (e.g. cleaning agents). Consequently, trace amounts of these chemicals may remain on (sub) components, such as heatsinks. Lumileds, therefore, recommends the following precautions when designing your application:

- When designing secondary lenses to be used over an LED, provide a sufficiently large air-pocket and allow for “ventilation” of this air away from the immediate vicinity of the LED.
- Use mechanical means of attaching lenses and circuit boards as much as possible. When using adhesives, potting compounds and coatings, carefully analyze its material composition and do thorough testing of the entire fixture under High Temperature over Life (HTOL) conditions.
Table 5. List of commonly used chemicals that may damage the silicone overcoat of LUXEON V2.

<table>
<thead>
<tr>
<th>CHEMICAL NAME</th>
<th>TYPICAL USE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrochloric Acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Sulfuric Acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Nitric Acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Acetic Acid</td>
<td>Acid</td>
</tr>
<tr>
<td>Sodium Hydroxide</td>
<td>Alkali</td>
</tr>
<tr>
<td>Potassium Hydroxide</td>
<td>Alkali</td>
</tr>
<tr>
<td>Ammonia</td>
<td>Alkali</td>
</tr>
<tr>
<td>MEK (Methyl Ethyl Ketone)</td>
<td>Solvent</td>
</tr>
<tr>
<td>MIBK (Methyl Isobutyl Ketone)</td>
<td>Solvent</td>
</tr>
<tr>
<td>Toluene</td>
<td>Solvent</td>
</tr>
<tr>
<td>Xylene</td>
<td>Solvent</td>
</tr>
<tr>
<td>Benzene</td>
<td>Solvent</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Solvent</td>
</tr>
<tr>
<td>Mineral spirits</td>
<td>Solvent</td>
</tr>
<tr>
<td>Dichloromethane</td>
<td>Solvent</td>
</tr>
<tr>
<td>Tetrachlorometane</td>
<td>Solvent</td>
</tr>
<tr>
<td>Castor Oil</td>
<td>Oil</td>
</tr>
<tr>
<td>Lard</td>
<td>Oil</td>
</tr>
<tr>
<td>Linseed Oil</td>
<td>Oil</td>
</tr>
<tr>
<td>Petroleum</td>
<td>Oil</td>
</tr>
<tr>
<td>Silicone Oil</td>
<td>Oil</td>
</tr>
<tr>
<td>Halogenated Hydrocarbons (containing F, Cl, Br elements)</td>
<td>Misc.</td>
</tr>
<tr>
<td>Rosin Flux</td>
<td>Solder Flux</td>
</tr>
<tr>
<td>Acrylic Tape</td>
<td>Adhesive</td>
</tr>
</tbody>
</table>
About Lumileds

Companies developing automotive, mobile, IoT and illumination lighting applications need a partner who can collaborate with them to push the boundaries of light. With over 100 years of inventions and industry firsts, Lumileds is a global lighting solutions company that helps customers around the world deliver differentiated solutions to gain and maintain a competitive edge. As the inventor of Xenon technology, a pioneer in halogen lighting and the leader in high performance LEDs, Lumileds builds innovation, quality and reliability into its technology, products and every customer engagement. Together with its customers, Lumileds is making the world better, safer, more beautiful—with light.

To learn more about our lighting solutions, visit lumileds.com.